Bharati Vidyapeeth University
College of Engineering
Department of Chemical Engineering

Part 1 Structure of Ph. D. Coursework

Bharati Vidyapeeth Deemed University Faculty of Engineering and Technology

Structure of Ph. D. Coursework

(With effect from Academic Year 2017-18)

Sr. No.	Subject	Teaching Scheme		Examination Scheme (Marks)			Credits
51.140.		L	P/D	Theory Examination	Presentations	Total	Credits
1	Paper I: Research Methodology	4	-	100	-	100	04
2	Paper II: Advances in Chemical Engineering	4	-	100	-	100	04
3	i) Literature surveypresentationii) Presentation of ideaof research*	-	02	-	50	50	02
Total		08	04	200	100	300	12

Note

^{*:} The student will have to give presentation based on the literature survey and idea of research and shall submit copy of the presentation to the respective **Head of the constituent unit** which is his/her place of research.

Part 2

Paper I

Research Methodology

BHARATI VIDYAPEETH DEEMED UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY

Ph.D. Course-work Syllabus

Paper-I

Research Methodology

TEACHING SCHEME		EXAMINATION SCHEME	CREDITS ALLOTTED		
Lectures: 4 Hours/Week		Theory Examination: 100 Marks	Total Credits: 04		
		Duration : 3Hrs			
	Topics Covered				
UNIT-I	Types and Characteristics of Research			(6 Hours)	
	Definition and obj	ectives of research, Characteristics of re	search, Types of		
	research- Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative				
	vs. Qualitative, Conceptual vs. Empirical, Overview of research				
	methodology in	various areas of engineering, Introduc	tion to problem		
	solving, basic research terminology such as proof, hypothesis, lemma etc.,				
	Role of information and communication technology (ICT) in research.				
UNIT-II	Review of Literature			(6 Hours)	
	Importance of literature review in defining a research problem, sources of				
	literature, identifying the gap areas from the literature review				
	Searching for publications: Publication databases, search engines and patent				
	databases etc.				
UNIT-III	Research Problem Formulation			(6 Hours)	
	Research problem formulation, determine the scope, objectives, limitations				
	and assumptions of the identified research problem, justify basis for				
	assumption, developing the objectives				
	Developing a re	search plan: Exploration, description,	diagnosis and		
	experimentation				
UNIT-IV	Methods of Data Collection			(6 Hours)	
	Static and dynami	c characteristics of instruments used in	experimental set		
	up, calibration of	various instruments, sampling methods,	various methods		
	of data collection,	selection of appropriate method for data	a collection, data		
	collection using a digital computer system, case studies of data collection.				

UNIT-V	Inferential Statistics and Hypothesis Testing	(6 Hours)
	Data processing, data analysis strategies and tools, Basic concepts	
	concerning testing of hypotheses, procedures of hypothesis testing,	
	generalization and interpretation, Hypothesis testing: Z-test, T-test, Chi	
	Square test, Analysis of variance (ANOVA) etc.	
UNIT-VI	Quantitative Methods and Applied Statistics	
	Measurement of central tendency and dispersion, Probability distribution,	
	Regression analysis, Parameter estimation, Multivariate statistics, Principal	
	component analysis, moments and response curve methods, probable errors	
	in research, error analysis, Hidden Markov Model (HMM)	
UNIT-VII	Computer Applications	(6 Hours)
	Role of computers in research, maintaining literature data using software	
	tools such as Mendeley, Endnote2 etc., tabulation and graphical	
	presentation of research data, use of statistical software tools such as Excel,	
	R, SPSS, GRETL, MINITAB etc. in research, use of word processing tools	
	such as Latex, software tools for making effective presentation.	
UNIT-VIII	Developing Research Report: Structure and components of scientific	(6 Hours)
	reports, types of report, developing research report.	
	Thesis Writing: Different steps and software tools in the design and	
	preparation of thesis, layout, structure and language of typical reports,	
	Illustrations and tables, bibliography, referencing and footnotes.	
	Oral Presentation: Creating and making effective presentation, use of	
	visual aids, importance of effective communication.	
UNIT-IX	Research Ethics and IPR	(6 Hours)
	Ethics: ethical issues in research, plagiarism tools and its importance.	
	IPR: intellectual property rights and patent law, techniques of writing a	
	Patent, filing procedure, technology transfer, copy right, royalty, trade	
	related aspects of intellectual property rights.	
UNIT-X	Publishing of research work	
	Design of conference and journal research paper, design of review paper,	
	effective way of writing abstract, introduction, result and discussion and	
	conclusion in research papers, answering the queries of reviewers.	

	Lorentz and a final lighting in standard database and a Common Web of			
	Importance of publication in standard databases such as Scopus, Web of			
	science etc., understanding of h-index, citation index and impact factor.			
	·			
Tex	tt Books/References:			
1.	Wayne Goddard, Stuart Melville, Research Methodology: An Introduction, Juta and Company			
	Ltd, 2004			
2.	Ranjit Kumar, Research Methodology: A Step by Step Guide for Beginners, SAGE publications			
	Ltd., 2011.			
3.	C. R. Kothari, Research Methodology: Methods and Trends, New Age International, 2004			
4.	S.D. Sharma, Operational Research, Kedar Nath Ram Nath & Co.,1972			
5.	B.L. Wadehra, Law relating to patents, trademarks, copyright designs and geographical			
	indications, Universal Law Publishing, 2014.			
6.	Donald Cooper, Pamela Schindler, Business Research Methods, McGraw-Hill publication, 2005.			
7.	T. W. Anderson, An introduction to Multivariate Statistical Analysis, Wiley Eastern Pvt. Ltd. New			
	Delhi.			
8.	A. Fink, Conducting Research Literature Reviews: from the internet to paper, Sage Publications,			
	2009			
9.	R. A. Day, How to write and publish a scientific paper, Cambridge University Press, 1992			

Part 3 Paper- II Advances in Chemical Engineering

BHARATI VIDYAPEETH DEEMED UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY

Ph.D. Course-work Syllabus

Paper- II

Advances in Chemical Engineering

TEACHIN	G SCHEME	EXAMINATION SCHEME	CREDITS ALL	OTTED	
Lectures	Lectures : 4 Hours/Week Theory Examination : 100 Marks Total Cred		Total Credits:	04	
		Duration : 3Hrs			
		Topics Covered			
UNIT-I	Chemical Engine	ering Mathematics		(6 Hours)	
	Review of basic	Review of basic concepts of Numerical Methods; Applications of			
	Numerical Metho	ds for transport processes, Numerical d	ifferentiation and		
	integration for mu	ltidimensional systems; Application of s	oftware.		
UNIT-II	Fluid Flow Opera	ations		(6 Hours)	
	Review of basics	Review of basics concepts of Fluid flow operations; fluid statics and fluid			
	dynamics, flow through pipe, flow rate and pressure drop calculations; Two				
	phase flow: Gas/liquid, liquid/liquid and gas/solid flow, flow types and				
	regimes in horizontal and vertical flow, behavior of non-Newtonian fluids				
	in two phase flow				
UNIT-III	Chemical Engineering Thermodynamics			(6 Hours)	
	Review of chemical engineering thermodynamics; Classical				
	thermodynamics and statistical thermodynamics, phase equilibria and				
	chemical reaction equilibria; phase non-ideality measurement using				
	advanced models	viz. NRTL, activity coefficient mod	del, etc.; Energy		
	calculations.				
UNIT-IV	Heat Transfer			(6 Hours)	
	Basic concepts of	heat transfer, designing of heat transfer	r equipment such		
	as heat exchange	r, evaporator, boiler, cooling tower, e	etc. heat transfer		
	equipment design	standards.			
UNIT-V	Mass Transfer			(6 Hours)	
	Mass transfer mo	dels; Advanced separation techniques:	Azeotropic and		

	anterestine distillation manatine distillation arrangitical fluid compaction			
	extractive distillation, reactive distillation, supercritical fluid separation,			
	zone melting; chromatographic separation, Multi-component separation:			
	Mass transfer with chemical reaction.			
UNIT-VI	NIT-VI Chemical Engineering Process Modeling and Optimization			
	Review of Process Modeling and Optimization, modeling of chemical			
	process optimization, advanced simulation approaches using CFD, etc.			
	multi-variable and Multi-objective optimization.			
UNIT-VII	NIT-VII Biochemical Engineering			
	Review of Biochemical processes, Microbial biochemistry: Fermentation			
	technology, Biofuel Technology, pyrolysis and gasification of biomass,			
	design aspects of bioreactors.			
UNIT-VIII	Multiphase Reactor Engineering	(6 Hours)		
	Review of chemical reaction engineering, Types, classification, application			
	of industrial importance; Hydrodynamic characteristics of different			
	reactors: mechanically agitated contactors, bubble columns, slurry reactors,			
	spray columns, loop reactors and modified versions; Design aspects of			
	multiphase reactors: Determination of controlling step, determination of			
	intrinsic kinetics and factors affecting intrinsic kinetics, pressure drop,			
	fractional phase hold- up, mass and heat transfer coefficient, extent of			
	mixing, etc.			
UNIT-IX	Process Dynamics and Control	(6 Hours)		
	Introduction to Multivariable systems, Interaction dynamics and its role on			
	control system design, Multivariable control classical approaches, Structure			
	selection- variable pairing, tuning single loop controllers for MIMO			
	systems, IMC controller design, pole placement controller design, Design			
	of observer, Kalman filter design, Model (observer) based predictive			
	controllers, LQR/LQG, various MPC schemes.			
UNIT-X	Wastewater Treatment	(6 Hours)		
	Review of waste water treatment, advanced treatment techniques viz.			
	advanced oxidation processes (AOPs), advanced biological treatments,			
	membrane based treatments, etc. analytical techniques.			
		<u> </u>		

Tex	Text Books/References:				
1.	Luyben, W.L. Process Modeling, Simulation and Control for Chemical Engineers, McGraw-Hill				
2.	Brenner, C. E. Fundamentals of Multiphase flows, Cambridge University Press				
3.	Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to Chemical Engineering Thermodynamics, McGraw Hill				
4.	Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; John Wiley and Sons Publications				
5.	Wetly,J.H; Wicks,C.E.; Wilson, R.E. Fundamentals of momentum, heat and Mass transfer, John Wiley and sons				
6.	Hines, A.L.; Maddox, R.N. Mass Transfer Fundamentals and Applications, Prentice Hall				
7.	King, C. J. Seperation Processes, Tata McGraw Hill				
8.	Froment, G.F.; Bischoff, K.B. Chemical Reactor Analysis and Design, John Wiley and Sons				
9.	Smith J.M. Chemical Engineering Kinetics, McGraw-Hill				
10.	Press <u>W.H;Teukolsky</u> S.A.; <u>Vetterling</u> , W.T.; <u>Flannery</u> , B.P.Numerical Recipes inMulti- Language Code, Cambridge University press				
11.	Shuler, M.L.; Fikret, K. Bioprocess Engineering: Basic Concepts, Prentice Hall				
12.	Bailey, J.E.; Ollis, D.F. Biochemical Engineering Fundamentals. McGraw-Hill				
13.	Chakraborti, A.; Biotechnology and alternative technologies for utilization of biomass or agricultural waste, oxford and IBH publishing Co				
14.	Sharma, M. M.; Doraiswamy, L. K. Heterogeneous Reactions, John Wiley and Sons				
15.	Levenspiel, O.; Kunni, D. Fluidization Engineering, John Wiley and Sons				
16.	Davidson, J. F.; Harrison, D. Fluidization, Academic Press Inc.				
17.	Stephanopoulos, G. Chemical Process Control: An introduction to theory and practice, Prentice Hall				
18.	Coughanowr, D.R.; Process systems Analysis and Control, McGraw Hill				
19.	MetCalf; Eddie. Waste Water Engineering: Treatment and Reuse, Tata McGrawHill				
20.	Noel de Nevers, Air Pollution Control Engineering, Waveland Pr. Inc.				
21.	Ewing, G.W. Instrumental Methods of Chemical analysis, Tata McGraw Hill				
22.	Davis, M.E. Numerical Methods and Modeling for Chemical Engineers, John Wiley and Sons				